5. 连续观测
有两个方法将连续观测序列和HMM结合.
- 将连续观测聚类为离散类别,这就对应到HMM离散观测序列. 然后按照HMM离散观测序列处理.
-
更改观测概率函数为密度函数,例如高斯概率密度, 这需要替换观测状态序列生成函数.
5.1 替换观测概率为高斯密度
在离散观测序列中,发射函数\( b_j(m) \)定义为:
\[ B = [b_j(m)] \quad where \quad b_j(m) \equiv P(O_t = v_m | q_t = S_j) \]
将其替换为高斯密度函数(也可以是其他分布概率密度函数, 但参数更新部分需要同步替换),可以让HMM实现连续观测.
\[\begin{align}
B = [b_j(O_t)] & \equiv P(O_t | q_t = S_j, \lambda) \sim \mathcal{N}(\mu_j, \sigma_j^2) \\
&= \frac{1}{\sqrt{2 \pi \sigma_j^2}} \exp \left[ \frac{-(O_t – \mu_j)^2}{2 \sigma_j^2} \right]
\end{align}\]
参数更新:
\[\begin{align}
\bar{\mu}_j &= \frac{\sum_{k=1}^K \sum_{t=1}^{T_{O^k}} \gamma_t^k(i) O_t^k }{\sum_{k=1}^K \sum_{t=1}^{T_{O^k}} \gamma_t^k(i)} \\
\bar{\sigma}_j^2 &= \frac{\sum_{k=1}^K \sum_{t=1}^{T_{O^k}} \gamma_t^k(i) (O_t^k – \bar{\mu}_j)^2 }{\sum_{k=1}^K \sum_{t=1}^{T_{O^k}} \gamma_t^k(i)}
\end{align}\]
5.2 高斯混合分布
考虑观测序列为\( L \)个高斯分布按某比例混合.
\[\begin{align}
B = [b_j(O_t)] & \equiv P(O_t | q_t = S_j, \lambda) = \sum_{l=1}^L C_{jl} \mathcal{N}(O_t, \mu_{jl}, \sigma_{jl}^2) \\
\text{s.t.} \\
& \sum_{l=1}^L C_{jl} = 1.0
\end{align}\]
参数更新需要考虑混合系数,通过混合密度期望比例更新.
\[\begin{align}
\gamma_t^k(j, l) &= \gamma_t^k(j) \frac{C_{jl} \mathcal{N}(O_t^k, \mu_{jl}, \sigma_{jl}^2)}{\sum_{l=1}^L C_{jl} \mathcal{N}(O_t^k, \mu_{jl}, \sigma_{jl}^2)} \\
\bar{C}_{jl} &= \frac{\sum_{k=1}^K \sum_{t=1}^{T_{O^k}} \gamma_t^k(j,l)}{\sum_{k=1}^K \sum_{t=1}^{T_{O^k}} \sum_{l=1}^L \gamma_t^k(j, l)} \\
\bar{\mu}_{jl} &= \frac{\sum_{k=1}^K \sum_{t=1}^{T_{O^k}} \gamma_t^k(j,l) O_t^k }{\sum_{k=1}^K \sum_{t=1}^{T_{O^k}} \gamma_t^k(j,l)} \\
\bar{\sigma}_{jl}^2 &= \frac{\sum_{k=1}^K \sum_{t=1}^{T_{O^k}} \gamma_t^k(j,l) (O_t^k – \bar{\mu}_{jl})^2 }{\sum_{k=1}^K \sum_{t=1}^{T_{O^k}} \gamma_t^k(j,l)}
\end{align}\]
5.3 多维高斯混合分布
多维相对单维只是替换了高斯函数,其余没有变化, \( d \)表示维度.
\[\begin{align}
\mathcal{N}(x, \mu, \Sigma) &= \frac{1}{ (2 \pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}} } \exp \left[ -\frac{1}{2} (x – \mu)^T \Sigma^{-1} (x – \mu) \right] \\
\gamma_t^k(j, l) &= \gamma_t^k(j) \frac{C_{jl} \mathcal{N}(O_t^k, \mu_{jl}, \Sigma_{jl})}{\sum_{l=1}^L C_{jl} \mathcal{N}(O_t^k, \mu_{jl}, \Sigma_{jl})} \\
\bar{\Sigma}_{jl} &= \frac{\sum_{k=1}^K \sum_{t=1}^{T_{O^k}} \gamma_t^k(j,l) (O_t^k – \bar{\mu}_{jl}) (O_t^k – \bar{\mu}_{jl})^T }{\sum_{k=1}^K \sum_{t=1}^{T_{O^k}} \gamma_t^k(j,l)}
\end{align}\]
在多维分布计算中,连续观测序列的数据样本过少,样本各维度之间存在线形组合,会造成协方差矩阵奇异(共线/共面), 然后高斯函数计算失败. 因此样本数量需要远多于维度,且通过预处理消除线形组合维,如必要,可以有意添加噪声.
5.4 数值稳定
工程中使用\( \hat{\gamma}_t^k(j) \) 替换 \( \gamma_t^k(j) \), 否则可能因为序列过长导致计算结果超出机器精度容许范围.
5.5 代码试验
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 | import numpy as np from matplotlib import pyplot as plt # multivaiance normal probability density function def Multivar_Norm_PDF(x, mean, cov): dev = x - mean y = np.dot(dev, np.linalg.pinv(cov)) y = np.sum(y * dev, axis=0) y = np.exp( -0.5 * y ) y = (1.0 / ((2*np.pi)**(len(x) / 2) * np.linalg.det(cov) ** 0.5)) * y return y # Gaussian mixture model def GMM_PDF(x, coef, mean, cov): from scipy import stats v1 = sum([coef[l] * stats.multivariate_normal(mean[l], cov[l], True).pdf(x) for l in range(len(coef))]) # v2 = sum([coef[l] * Multivar_Norm_PDF(x, mean[l], cov[l]) for l in range(len(coef))]) # np.testing.assert_allclose(v1, v2, equal_nan=False, err_msg='cov compare') return v1 # the probability density of the model given observation sequence and state sequence def PDFOQ(Q, O, Lambda): ''' p(Q,O | \lambda)=\prod^T_{t=1}p(q_t|q_{t-1}, \lambda)p(O_t|q_t, \lambda) ''' A, B_coef, B_mean, B_cov, Pi = Lambda T = O.shape[0] assert( len(Q) == len(O) ) assert( A.shape[0] == A.shape[1] == B_coef.shape[0] == Pi.shape[0] ) assert( Q.min() >= 0 and Q.max() < A.shape[0] ) return np.prod([(A[Q[t-1], Q[t]] if t>0 else Pi[Q[t]]) * GMM_PDF(O[t], B_coef[Q[t]],B_mean[Q[t]],B_cov[Q[t]]) for t in range(T)]) # the log probability density of the model given observation sequence and state sequence def logPDFOQ(Q, O, Lambda): ''' \log P(Q,O | \lambda)=\sum^T_{t=1} \log p(q_t|q_{t-1}, \lambda) + \log p(O_t|q_t, \lambda) ''' A, B_coef, B_mean, B_cov, Pi = Lambda T = O.shape[0] assert( len(Q) == len(O) ) assert( A.shape[0] == A.shape[1] == B_coef.shape[0] == Pi.shape[0] ) assert( Q.min() >= 0 and Q.max() < A.shape[0] ) logPi, logA = np.log(Pi), np.log(A) return np.sum([(logA[Q[t-1], Q[t]] if t>0 else logPi[Q[t]]) + np.log(GMM_PDF(O[t], B_coef[Q[t]],B_mean[Q[t]],B_cov[Q[t]])) for t in range(T)]) # normal forward algorithm class Alpha_GMM: def __init__(self, O, Lambda): self.O = O self.A, self.B_coef, self.B_mean, self.B_cov, self.Pi = Lambda self.T = len(O) self.N = self.A.shape[0] assert( self.A.shape[0] == self.A.shape[1] == self.B_coef.shape[0] == self.B_mean.shape[0] == self.Pi.shape[0] ) assert( self.B_coef.shape[1] == self.B_mean.shape[1] == self.B_cov.shape[1] ) assert( self.B_mean.shape[2] == self.B_cov.shape[2] == self.B_cov.shape[3] == len(self.O[0]) ) ''' \alpha_t(i) \equiv P(O_1 \cdots O_t, q_t = S_i | \lambda) notice: param t: 0=>t1, 1=>t2, ..., T-1=>T ''' self.alpha = np.zeros(shape=(self.T, self.N)) for t in range(self.T): if t == 0: self.alpha[t] = [self.Pi[i] * GMM_PDF(self.O[t], self.B_coef[i], self.B_mean[i], self.B_cov[i]) for i in range(self.N)] else: self.alpha[t] = [sum([self.alpha[t-1, h] * self.A[h, i] for h in range(self.N)]) * GMM_PDF(self.O[t], self.B_coef[i],self.B_mean[i],self.B_cov[i]) for i in range(self.N)] def __call__(self, t, i): return self.alpha[t, i] # normal backword algorithm class Beta_GMM: def __init__(self, O, Lambda): self.O = O self.A, self.B_coef, self.B_mean, self.B_cov, self.Pi = Lambda self.T = len(O) self.N = self.A.shape[0] assert( self.A.shape[0] == self.A.shape[1] == self.B_coef.shape[0] == self.B_mean.shape[0] == self.Pi.shape[0] ) assert( self.B_coef.shape[1] == self.B_mean.shape[1] == self.B_cov.shape[1] ) assert( self.B_mean.shape[2] == self.B_cov.shape[2] == self.B_cov.shape[3] == len(self.O[0]) ) ''' \beta_t(i) \equiv P(O_{t+1} \cdots O_T | q_t = S_i, \lambda) notice: param t: T=>T,T-1=>T-1,...,1=>t1,0=>t0 ''' self.beta = np.ones(shape=(self.T+1, self.N)) for t in range(self.T-1, -1, -1): if t == 0: self.beta[t] = np.array([ self.Pi[j] * GMM_PDF(self.O[t], self.B_coef[j],self.B_mean[j],self.B_cov[j]) * self.beta[t+1, j] for j in range(self.N)]).sum() else: self.beta[t] = np.array([ self.A[:,j] * GMM_PDF(self.O[t], self.B_coef[j],self.B_mean[j],self.B_cov[j]) * self.beta[t+1, j] for j in range(self.N)]).sum(axis=0) def __call__(self, t, i): return self.beta[t, i] # scaling forward algorithm class Alpha_Hat_GMM: def __init__(self, O, Lambda): self.O = O self.A, self.B_coef, self.B_mean, self.B_cov, self.Pi = Lambda self.T = len(O) self.N = self.A.shape[0] assert( self.A.shape[0] == self.A.shape[1] == self.B_coef.shape[0] == self.B_mean.shape[0] == self.Pi.shape[0] ) assert( self.B_coef.shape[1] == self.B_mean.shape[1] == self.B_cov.shape[1] ) assert( self.B_mean.shape[2] == self.B_cov.shape[2] == self.B_cov.shape[3] == len(self.O[0]) ) ''' \hat{\alpha}_t(i) & \equiv P(q_t = S_i | O_1 \cdots O_t, \lambda) notice: param t: 0=>t1, 1=>t2, ..., T-1=>T ''' self.C = np.zeros(shape=(self.T,)) self.alpha_hat = np.zeros(shape=(self.T, self.N)) for t in range(self.T): if t==0: self.alpha_hat[t] = [self.Pi[i] * GMM_PDF(self.O[t], self.B_coef[i],self.B_mean[i],self.B_cov[i]) for i in range(self.N)] else: self.alpha_hat[t] = [sum([self.alpha_hat[t-1, h] * self.A[h, i] for h in range(self.N)]) * GMM_PDF(self.O[t], self.B_coef[i],self.B_mean[i],self.B_cov[i]) for i in range(self.N)] self.C[t] = self.alpha_hat[t].sum() self.alpha_hat[t] /= self.C[t] def __call__(self, t, i): return self.alpha_hat[t,i] # scaling backward algorithm class Beta_Hat_GMM: def __init__(self, O, Lambda, C): self.O = O self.A, self.B_coef, self.B_mean, self.B_cov, self.Pi = Lambda self.T = len(O) self.N = self.A.shape[0] self.C = C assert( len(self.O) == len(self.C) ) assert( self.A.shape[0] == self.A.shape[1] == self.B_coef.shape[0] == self.B_mean.shape[0] == self.Pi.shape[0] ) assert( self.B_coef.shape[1] == self.B_mean.shape[1] == self.B_cov.shape[1] ) assert( self.B_mean.shape[2] == self.B_cov.shape[2] == self.B_cov.shape[3] == len(self.O[0]) ) ''' \hat{\beta}_t(i) = \frac{ \beta_t(i) }{ \prod_{u=t+1}^T C_u } notice: param t: T=>T,T-1=>T-1,...,1=>t1,0=>t0 ''' self.beta_hat = np.ones(shape=(self.T+1, self.N)) for t in range(self.T-1, -1, -1): if t == 0: self.beta_hat[t] = np.array([ self.Pi[j] * GMM_PDF(self.O[t], self.B_coef[j],self.B_mean[j],self.B_cov[j]) * self.beta_hat[t+1, j] for j in range(self.N)]).sum() else: self.beta_hat[t] = np.array([ self.A[:,j] * GMM_PDF(self.O[t], self.B_coef[j],self.B_mean[j],self.B_cov[j]) * self.beta_hat[t+1, j] for j in range(self.N)]).sum(axis=0) self.beta_hat[t] /= self.C[t] def __call__(self, t, i): return self.beta_hat[t,i] def Xi_GMM(t, i, j, O, Lambda, alpha, beta): # \xi_t(i, j) = \frac{ \alpha_t(i) a_{ij} b_j(O_{t+1}) \beta_{t+1}(j) }{ \sum_k^N \sum_l^N \alpha_t(k) a_{kl} b_l(O_{t+1}) \beta_{t+1}(l) } A, B_coef, B_mean, B_cov, Pi = Lambda N = Pi.shape[0] numerator = alpha(t, i) * A[i, j] * GMM_PDF(O[t+1], B_coef[j],B_mean[j],B_cov[j]) * beta(t+2, j) denominator = sum( [alpha(t, i) * A[i, j] * GMM_PDF(O[t+1], B_coef[j],B_mean[j],B_cov[j]) * beta(t+2, j) for i in range(N) for j in range(N)] ) return numerator/denominator def Xi_Hat_GMM(t, i, j, O, Lambda, alpha_hat, beta_hat): # \hat{\xi}_t(i, j) &= \frac{1}{C_{t+1}} \hat{\alpha}_t(i) a_{ij} b_j(O_{t+1}) \hat{\beta}_{t+1}(j) A, B_coef, B_mean, B_cov, Pi = Lambda numerator = alpha_hat(t, i) * A[i, j] * GMM_PDF(O[t+1], B_coef[j],B_mean[j],B_cov[j]) * beta_hat(t+2, j) denominator = alpha_hat.C[t+1] return numerator/denominator def Gamma_GMM(t, i, O, Lambda, alpha, beta): # \gamma_t(i) = \frac{ \alpha_t(i) \beta_t(i) }{ \sum_l^N \alpha_t(l) \beta_t(l) } A, B_coef, B_mean, B_cov, Pi = Lambda N, L = B_coef.shape numerator = alpha(t, i) * beta(t+1, i) denominator = sum( [alpha(t, i) * beta(t+1, i) for i in range(N)] ) return numerator / denominator def Gamma_Hat_GMM(t, i, O, Lambda, alpha_hat, beta_hat): # \hat{\gamma}_t(i) &= \hat{\alpha}_t(i) \hat{\beta}_t(i) return alpha_hat(t, i) * beta_hat(t+1, i) def Gamma_L_GMM(t, i, l, O, Lambda, alpha, beta): A, B_coef, B_mean, B_cov, Pi = Lambda num = B_coef[i,l] * GMM_PDF(O[t], [1.0], [B_mean[i,l]], [B_cov[i,l]]) den = GMM_PDF(O[t], B_coef[i], B_mean[i], B_cov[i]) p1 = Gamma_GMM(t, i, O, Lambda, alpha, beta) p2 = num / den return p1 * p2 def Gamma_Hat_L_GMM(t, i, l, O, Lambda, alpha_hat, beta_hat): A, B_coef, B_mean, B_cov, Pi = Lambda num = B_coef[i,l] * GMM_PDF(O[t], [1.0], [B_mean[i,l]], [B_cov[i,l]]) den = GMM_PDF(O[t], B_coef[i], B_mean[i], B_cov[i]) p1 = Gamma_Hat_GMM(t, i, O, Lambda, alpha_hat, beta_hat) p2 = num / den return p1 * p2 # find best state sequnce in the model given the parameters of the model and observation sequence def Viterbi(O, Lambda): A, B_coef, B_mean, B_cov, Pi = Lambda T = O.shape[0] N = A.shape[0] assert( A.shape[0] == A.shape[1] == B_coef.shape[0] == B_mean.shape[0] == Pi.shape[0] ) assert( B_coef.shape[1] == B_mean.shape[1] == B_cov.shape[1] ) assert( B_mean.shape[2] == B_cov.shape[2] == B_cov.shape[3] == len(O[0]) ) delta = np.zeros(shape=(T, N)) psi = np.zeros(shape=(T, N), dtype=np.int) for t in range(T): ''' 0=>t1, 1=>t2, ...,T-1=>T ''' if t == 0: # \delta_1(i) &= \pi_i b_i(O_1) # delta[t] = Pi * B[:, O[t]] for i in range(N): delta[t,i] = Pi[i] * GMM_PDF(O[t], B_coef[i],B_mean[i],B_cov[i]) # \psi_1(i) &= null psi[t] = np.nan else: # \delta_t(j) &= \underset{i}{\max} [\delta_{t-1}(i) a_{ij}] b_j(O_t) # \psi_t(j) &= \underset{i}{\arg \max} [\delta_{t-1}(i) a_{ij}] for j in range(N): max_delta = max([(delta[t-1, i] * A[i, j] * GMM_PDF(O[t], B_coef[j],B_mean[j],B_cov[j]), i) for i in range(N)], key=lambda x:x[0]) delta[t, j] = max_delta[0] psi[t, j] = max_delta[1] Q = np.zeros(shape=T, dtype=np.int) # \bar{P} &= \underset{i}{\max} \delta_T(i) # \bar{q}_T &= \underset{i}{\arg \max} \delta_T(i) P = np.max(delta[T-1]) Q[T-1] = np.argmax(delta[T-1]) # \bar{q}_t = \psi_{t+1}( \bar{q}_{t+1} ) \qquad \text{where} \qquad t=T-1,T-2,\cdots,2,1 for t in range(T-2, -1, -1): Q[t] = psi[t+1, Q[t+1]] return Q, P # find best state sequnce using log in the model given the parameters of the model and observation sequence def logViterbi(O, Lambda): logA, B_coef, B_mean, B_cov, logPi = np.log(Lambda[0]), Lambda[1], Lambda[2], Lambda[3], np.log(Lambda[4]) T = O.shape[0] N = logA.shape[0] assert( logA.shape[0] == logA.shape[1] == B_coef.shape[0] == B_mean.shape[0] == logPi.shape[0] ) assert( B_coef.shape[1] == B_mean.shape[1] == B_cov.shape[1] ) assert( B_mean.shape[2] == B_cov.shape[2] == B_cov.shape[3] == len(O[0]) ) logdelta = np.zeros(shape=(T, N)) logpsi = np.zeros(shape=(T, N), dtype=np.int) for t in range(T): ''' 0=>t1, 1=>t2, ...,T-1=>T ''' if t == 0: # \delta_1(i) &= \pi_i b_i(O_1) # logdelta[t] = logPi + logB[:, O[t]] for i in range(N): logdelta[t,i] = logPi[i] + np.log(GMM_PDF(O[t], B_coef[i],B_mean[i],B_cov[i])) # \psi_1(i) &= null logpsi[t] = np.nan else: # \delta_{t+1}(j) = \underset{i}{\max} \delta_t(i) + \log a_{ij} + \log b_j(O_{t+1}) # \psi_t(j) &= \underset{i}{\arg \max} [\delta_{t-1}(i) a_{ij}] for j in range(N): max_logdelta = max([(logdelta[t-1, i] + logA[i, j] + np.log(GMM_PDF(O[t], B_coef[j],B_mean[j],B_cov[j])), i) for i in range(N)], key=lambda x:x[0]) logdelta[t, j] = max_logdelta[0] logpsi[t, j] = max_logdelta[1] logQ = np.zeros(shape=T, dtype=np.int) # \bar{P} &= \underset{i}{\max} \delta_T(i) # \bar{q}_T &= \underset{i}{\arg \max} \delta_T(i) logP = np.max(logdelta[T-1]) logQ[T-1] = np.argmax(logdelta[T-1]) # \bar{q}_t = \psi_{t+1}( \bar{q}_{t+1} ) \qquad \text{where} \qquad t=T-1,T-2,\cdots,2,1 for t in range(T-2, -1, -1): logQ[t] = logpsi[t+1, logQ[t+1]] return logQ, logP def Prepare_X_GMM(X, Lambda): from collections import namedtuple PreX = namedtuple('PreX', 'O T alpha beta alpha_hat beta_hat') ret = [] for k in range(len(X)): O = X[k] T = len(O) alpha = Alpha_GMM(O, Lambda) beta = Beta_GMM(O, Lambda) alpha_hat = Alpha_Hat_GMM(O, Lambda) beta_hat = Beta_Hat_GMM(O, Lambda, alpha_hat.C) ret.append(PreX(O=O,T=T,alpha=alpha,beta=beta,alpha_hat=alpha_hat,beta_hat=beta_hat)) return ret def Baum_Welch_GMM(X, N, L, max_iter=30, epsilon=1e-8): # initial state probabilities Pi = np.random.dirichlet(np.ones(N), size=1).flatten() # \Pi = [\pi_i] # state transition probabilities A = np.random.dirichlet(np.ones(N), size=N) # A = [a_{ij}] # observation emission probabilitity densities # dementional X_d = len(X[0][0]) # probability of sepecify gaussian case B_coef = np.random.dirichlet(np.ones(L), size=N) # gaussian mean B_mean = np.random.random(size=[N, L, X_d]) # gaussian covariance matrix B_cov = np.random.random(size=[N, L, X_d, X_d]) B_cov = np.matmul(B_cov, B_cov.transpose([0,1,3,2])) B_cov = B_cov + B_cov.transpose([0,1,3,2]) # the parameters of the model Lambda = (A, B_coef, B_mean, B_cov, Pi) # \lambda = (A,B,\Pi) # total of observations X_K = len(X) pltx, plty, pltz = [], [], [] for it in range(max_iter): pre_X = Prepare_X_GMM(X, Lambda) # probability density for X # PDFX = np.prod( [sum([ pre_X[k].alpha(pre_X[k].T-1, i) for i in range(N)]) for k in range(X_K)] ) # logPDFX = sum( [sum([ np.log( pre_X[k].alpha_hat.C[t] ).sum() for t in range(pre_X[k].T)]) for k in range(X_K)] ) # np.testing.assert_allclose(PDFX, np.exp(logPDFX), equal_nan=False, err_msg='pdf X') # PDFXQ = np.prod( [Viterbi(pre_X[k].O, Lambda)[1] for k in range(X_K)] ) logPDFXQ = np.sum( [logViterbi(pre_X[k].O, Lambda)[1] for k in range(X_K)] ) # np.testing.assert_allclose(PDFXQ, np.exp(logPDFXQ), equal_nan=False, err_msg='pdf XQ') pltx.append(it) plty.append(logPDFXQ) # calc initial probabilities # Pi_bar = np.zeros(shape=Pi.shape) Pi_bar_hat = np.zeros(shape=Pi.shape) for i in range(N): # Pi_bar[i] = sum([Gamma_GMM(0, i, pre_X[k].O, Lambda, pre_X[k].alpha, pre_X[k].beta) for k in range(X_K)]) / X_K Pi_bar_hat[i] = sum([Gamma_Hat_GMM(0, i, pre_X[k].O, Lambda, pre_X[k].alpha_hat, pre_X[k].beta_hat) for k in range(X_K)]) / X_K # np.testing.assert_allclose(Pi_bar, Pi_bar_hat, equal_nan=False, err_msg='Pi checking') np.testing.assert_allclose(Pi_bar_hat.sum(), 1.0, equal_nan=False, err_msg='s.t. sum of \Pi to 1.0') # calc transition matrix # A_bar = np.zeros(shape=A.shape) A_bar_hat = np.zeros(shape=A.shape) for i in range(N): for j in range(N): # A_bar[i, j] = sum([Xi_GMM(t, i, j, pre_X[k].O, Lambda, pre_X[k].alpha, pre_X[k].beta) for k in range(X_K) for t in range(pre_X[k].T-1)]) / sum([Gamma_GMM(t, i, pre_X[k].O, Lambda, pre_X[k].alpha, pre_X[k].beta) for k in range(X_K) for t in range(pre_X[k].T-1)]) A_bar_hat[i, j] = sum([Xi_Hat_GMM(t, i, j, pre_X[k].O, Lambda, pre_X[k].alpha_hat, pre_X[k].beta_hat) for k in range(X_K) for t in range(pre_X[k].T-1)]) / sum([Gamma_Hat_GMM(t, i, pre_X[k].O, Lambda, pre_X[k].alpha_hat, pre_X[k].beta_hat) for k in range(X_K) for t in range(pre_X[k].T-1)]) # np.testing.assert_allclose(A_bar, A_bar_hat, equal_nan=False, err_msg='A checking') np.testing.assert_allclose(A_bar_hat.sum(axis=1), np.ones(N), equal_nan=False, err_msg='s.t. \sum_j a_ij = 1.0') # calc B matrix # B_bar_coef, B_bar_mean, B_bar_cov = np.zeros(shape=B_coef.shape), np.zeros(shape=B_mean.shape), np.zeros(shape=B_cov.shape) B_bar_hat_coef, B_bar_hat_mean, B_bar_hat_cov = np.zeros(shape=B_coef.shape), np.zeros(shape=B_mean.shape), np.zeros(shape=B_cov.shape) for i in range(N): for l in range(L): # B_bar_coef[i, l] = sum([Gamma_L_GMM(t, i, l, pre_X[k].O, Lambda, pre_X[k].alpha, pre_X[k].beta) for k in range(X_K) for t in range(pre_X[k].T)]) # B_bar_coef[i, l] /= sum([Gamma_L_GMM(t, i, q, pre_X[k].O, Lambda, pre_X[k].alpha, pre_X[k].beta) for k in range(X_K) for t in range(pre_X[k].T) for q in range(L)]) # B_bar_mean[i, l] = np.sum([Gamma_L_GMM(t, i, l, pre_X[k].O, Lambda, pre_X[k].alpha, pre_X[k].beta) * pre_X[k].O[t] for k in range(X_K) for t in range(pre_X[k].T)], axis=0) # B_bar_mean[i, l] /= sum([Gamma_L_GMM(t, i, l, pre_X[k].O, Lambda, pre_X[k].alpha, pre_X[k].beta) for k in range(X_K) for t in range(pre_X[k].T)]) # B_bar_cov[i, l] = np.sum([Gamma_L_GMM(t, i, l, pre_X[k].O, Lambda, pre_X[k].alpha, pre_X[k].beta) * np.dot( np.reshape((pre_X[k].O[t] - B_bar_mean[i, l]), [X_d, 1]), np.reshape((pre_X[k].O[t] - B_bar_mean[i, l]), [1, X_d]) ) for k in range(X_K) for t in range(pre_X[k].T)], axis=0) # B_bar_cov[i, l] /= sum([Gamma_L_GMM(t, i, l, pre_X[k].O, Lambda, pre_X[k].alpha, pre_X[k].beta) for k in range(X_K) for t in range(pre_X[k].T)]) # for hat gamma_i_l = [[Gamma_Hat_L_GMM(t, i, l, pre_X[k].O, Lambda, pre_X[k].alpha_hat, pre_X[k].beta_hat) for t in range(pre_X[k].T)] for k in range(X_K)] gamma_i_l_sum = sum([sum(gamma_i_l[k]) for k in range(X_K)]) # coef B_bar_hat_coef[i, l] = gamma_i_l_sum # mean B_bar_hat_mean[i, l] = np.sum([gamma_i_l[k][t] * pre_X[k].O[t] for k in range(X_K) for t in range(pre_X[k].T)], axis=0) B_bar_hat_mean[i, l] /= gamma_i_l_sum # cov B_bar_hat_cov[i, l] = np.sum([gamma_i_l[k][t] * np.matmul( np.reshape(pre_X[k].O[t] - B_bar_hat_mean[i, l], [X_d, 1]), np.reshape(pre_X[k].O[t] - B_bar_hat_mean[i, l], [1, X_d]) ) for k in range(X_K) for t in range(pre_X[k].T)], axis=0) B_bar_hat_cov[i, l] /= gamma_i_l_sum B_bar_hat_coef /= np.sum(B_bar_hat_coef, axis=1, keepdims=True) # np.testing.assert_allclose(B_bar_coef, B_bar_hat_coef, equal_nan=False, err_msg='coef') # np.testing.assert_allclose(B_bar_mean, B_bar_hat_mean, equal_nan=False, err_msg='mean') # np.testing.assert_allclose(B_bar_cov, B_bar_hat_cov, equal_nan=False, err_msg='cov') Lambda_bar = (A_bar_hat, B_bar_hat_coef, B_bar_hat_mean, B_bar_hat_cov, Pi_bar_hat) diff = np.sqrt(sum([np.square(Lambda_bar[i] - Lambda[i]).sum() for i in range(len(Lambda))])) pltz.append(diff) Lambda = Lambda_bar print(it, logPDFXQ, diff) if diff < epsilon: break return Lambda, (pltx, plty, pltz) # ============================================================================= np.random.seed(42) # observation sequence # O = { O_1,O_2,\cdots,O_T } # X = \{O^k\}_{k=1}^K g_X_D = 4 g_X_len_low = 20 g_X_len_high = 30 g_X_K = 35 g_X = [np.random.multivariate_normal(np.random.random(size=g_X_D), np.eye(g_X_D), size=np.random.randint(g_X_len_low, g_X_len_high)) for _ in range(g_X_K)] # N: number of statesin the model g_Model_N = 2 # the number of gaussian mixing g_Model_L = 3 # Baum Welch Lambda_bar, pltxyz = Baum_Welch_GMM(g_X, g_Model_N, g_Model_L, max_iter=30, epsilon=1e-8) # testing g_O = g_X[0] g_Q, g_PDFOQ = Viterbi(g_O, Lambda_bar) g_logQ, g_logPDFOQ = logViterbi(g_O, Lambda_bar) np.testing.assert_allclose( g_PDFOQ, np.exp( g_logPDFOQ ) ) g_PDFOQ = PDFOQ(g_Q, g_O, Lambda_bar) g_logPDFOQ = logPDFOQ(g_Q, g_O, Lambda_bar) np.testing.assert_allclose( g_PDFOQ, np.exp( g_logPDFOQ ) ) alpha = Alpha_GMM(g_O, Lambda_bar) beta = Beta_GMM(g_O, Lambda_bar) np.testing.assert_allclose( beta.beta[0][0], alpha.alpha[-1].sum() ) np.testing.assert_allclose( alpha.alpha[-1].sum(), sum([alpha(2, i) * beta(3, i) for i in range(g_Model_N)]) ) alpha_hat = Alpha_Hat_GMM(g_O, Lambda_bar) beta_hat = Beta_Hat_GMM(g_O, Lambda_bar, alpha_hat.C ) np.testing.assert_allclose( alpha.alpha[-1].sum(), np.prod( alpha_hat.C ) ) np.testing.assert_allclose( alpha.alpha[-1].sum(), sum([alpha_hat(1, i) * beta_hat(2, i) * np.prod( alpha_hat.C ) for i in range(g_Model_N)]) ) # show shifting = 0 plt.subplot(1,2,1) plt.plot( pltxyz[0][shifting:], pltxyz[1][shifting:] ) plt.title('log viterbi(X)') plt.xlabel('iter') plt.ylabel('log viterbi(X)') plt.subplot(1,2,2) plt.plot( pltxyz[0][shifting:], pltxyz[2][shifting:] ) plt.title('diff') plt.xlabel('iter') plt.ylabel('diff') plt.show() # ============================================================================= |
0 -7087.354061171159 18.581745152990617 1 -5204.931912976656 0.8548144843843375 2 -5153.54691178641 0.5830950886848522 3 -5126.047050948708 0.5030507653593529 4 -5105.274011193578 0.4436046367611551 5 -5090.158096582353 0.3600060911149254 6 -5079.018933037544 0.28021077183681226 7 -5070.732359450655 0.22988248156099672 8 -5064.437962119374 0.21363280592437056 9 -5059.18254551011 0.2272585115388629 10 -5053.853454296295 0.25076407878942814 11 -5049.180538215929 0.2454115673831218 12 -5044.58614092646 0.1980486669137678 13 -5040.718908658764 0.15030996650190787 14 -5037.029475173185 0.13462583153995095 15 -5032.993484112017 0.14188905693730416 16 -5028.943112234142 0.15918200243303968 17 -5025.016058393451 0.18317863464239617 18 -5021.254030631921 0.22357609275866736 19 -5017.857780075199 0.2986755847375107 20 -5013.397911528508 0.32835242533003234 21 -5009.566010268076 0.19204835060031583 22 -5006.5764218462 0.09665568837033864 23 -5003.874996032923 0.07049132848082566 24 -5001.442887752664 0.061711199974353564 25 -4999.214561662449 0.05751775772948252 26 -4997.066795052535 0.05534578069355525 27 -4995.069743936771 0.054576498257133385 28 -4993.2136027096985 0.05536390565866719 29 -4991.492109116793 0.0587813763199914
ref:
[1] Rabiner, L. R. 1989. “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition.” Proceedings of the IEEE 77:257–286.
[2] Steve Renals and Peter Bell, Automatic Speech Recognition— ASR Lectures 4&5 28/31 January 2013
[3] Ethem Alpaydın,Introduction to Machine Learning Third Edition p418-432
Leave a Reply